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ABSTRACT 10 

Water column processing has gained attention in recent years since a seismic model of a water 11 

column could assist marine data processors to correctly image the sub-seafloor geology, which is 12 

the target of primary interest. In addition to seismic processing, water column imaging has 13 

gained interest in the physical oceanography community for improved study of oceanographic 14 

processes. However, seismic water column processing is challenging since the internal 15 

reflections of the ocean are inherently weak and are often masked by noise. In this work, we 16 

adopt the common reflection surface stack technique in order to improve the imaging of ocean 17 

water layers. The common reflection surface stack is a robust data preconditioning and stacking 18 

technique in seismic processing that relies on the kinematic wavefront attributes of seismic 19 

waves. The method is applied to a multichannel 3D data set collected for oil and gas exploration 20 

in the deep-water Gulf of Mexico. The method greatly improves inline sections but does not 21 

significantly enhance crosslines and horizontal slices, which are more sensitive to both the 22 

acquisition geometry and the temporal variability of ocean water masses. 23 

 24 
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 26 

1 Introduction 27 

Water column processing could deliver important information about the effect of water masses 28 

on subsurface data processing in order to improve final imaging. Although water column 29 

processing is not included in standard processing, it is gaining attention recently. For 2D and 3D 30 

common-midpoint (CMP) imaging surveys, we typically use a single water column velocity 31 

profile and treat any spatial or temporal variations as static shifts applied as needed in the 32 

processing flow (Lacombe et al., 2009). In 4D surveys, it is important to separate the temporal 33 

variations in these static corrections from those we can attribute to other mechanisms such as the 34 

source-consistent statics related to the source radiation pattern and source tow, or the receiver-35 

consistent statics associated with the near-seafloor geology (MacKay et al., 2003). In a full-36 

waveform inversion study, where the goal is to create a high-resolution subsurface velocity 37 
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model, it is implied that a water column velocity model must be created that accounts for any 38 

variations in the raypaths within the water column which obscure the variations of interest in our 39 

target (i.e., Wood et al., 2008; Benfield et al., 2017). As the requirements of spatial or temporal 40 

resolution increase, processing is forced to increase the resolution and complexity of water 41 

column models to more accurately represent their heterogeneity. 42 

In the field known as seismic oceanography, the goal of the imaging exercise is to apply the 43 

techniques of reflection seismology to the water column itself. Scientists attempt to spatially and 44 

temporally map the changes in the water column impedance, which represents variations in 45 

salinity, temperature, pressure and density, to gain insight into the ocean processes which drive 46 

the stratification and variability of the water column. Holbrook et al. (2003) first showed that 2D 47 

seismic reflection sections, if appropriately processed, provide high resolution images of the 48 

ocean structures. Successively, Nandi et al. (2004) demonstrated that reflections within the water 49 

column are well-correlated with temperature contrasts and that water velocity is mainly 50 

influenced by temperature variations, and to a lesser extent, by salinity and density. These initial 51 

studies prompted physical oceanographers and geophysicists to investigate ocean water column 52 

physics using seismic data and, since then, seismic imaging and inversion have been proven to 53 

be useful tools in investigating oceanographic processes such as internal waves (Dickinson et al., 54 

2017); thermohaline structures (Ruddick et al., 2009; Papenberg et al., 2010); and fronts, eddies 55 

and boundaries between different water masses (Mirshak et al., 2010; Pinheiro et al., 2010). 56 

However, to date, the preponderance of seismic oceanography studies have used 2D seismic 57 

data, while 3D seismic data has been only minimally exploited by processing individual 2D 58 

swath subsets of 3D data (Blacic and Holbrook, 2010). In seismic oceanography applications, the 59 

water column acoustic impedance changes are on the order of 100 to 1000 times weaker than 60 

those occurring in the solid earth; in terms of dynamic range, this requires processing to achieve 61 

20-30 dB of gain when using conventional seismic data acquisition technologies. Reflections in 62 

the water column are readily masked by both coherent noise (e.g., direct wave, swell noise, 63 

subsurface reflections, strum noise) and non-coherent noise mechanisms (Holbrook et al., 2003; 64 

Piete et al., 2013). The operational limits of acquisition are a very confining factor in data 65 

processing since the acquisition is designed for subsurface imaging. Information theory assumes 66 

that with enough data and the correct processing model, these signals could be recovered from 67 

noise with sufficient processing gain. However, this may be beyond the limits of practicality in 68 

all cases for a given data set. 69 

In this work, we present enhanced 3D seismic images of the water column obtained by 70 

implementing a processing workflow based on the common-reflection-surface (CRS) technique. 71 

We evaluate the performance of the 3D CRS method on the water portion of a 3D multichannel 72 

seismic data set collected in the deep water of the Gulf of Mexico for oil and gas exploration. 73 

The results of the 3D CRS are compared with results of the standard 3D CMP to highlight the 74 

improvements. 75 

The CRS imaging is a data-driven and robust tool in seismic data processing that is particularly 76 

suitable for imaging of weak reflections (Müller, 1999; Jӓger et al., 2001; Mann, 2002). We 77 



implement the CRS-based workflows in prestack and poststack domains to improve the quality 78 

and continuity of the reflections within the water column. The prestack data enhancement is 79 

handled by the partial CRS method (Baykulov and Gajewski, 2009) which is a robust method for 80 

data preconditioning and interpolation. 81 

The standard CMP stack is based on the estimation of the root-mean-square (RMS) velocities 82 

that are usually obtained by manual picking of semblance panels, and as such is highly user-83 

dependent. In turn, the CRS stack requires less user input, as the main user-selected parameter is 84 

the choice of the aperture size for data stacking in different domains. The semblance bandwidth 85 

and a rough estimate of the near-surface velocity must be defined by the user as well. In the CRS 86 

technique no prior information about the media interior is required for processing. Therefore, we 87 

believe this method is well-suited for modeling the variations in oceanic water velocity, which 88 

are small in absolute magnitude but widely varying in space. 89 

 90 

2 Theory background 91 

 92 

2.1 The Common-Reflection-Surface Stack 93 

The CRS stack operator is based on wavefront curvature attributes (Hubral, 1983; Schleicher et 94 

al., 1993) and has many applications in seismic data processing including multiple suppression 95 

(Dümmong and Gajewski, 2008), velocity model building (Duveneck, 2004; Bakhtiari Rad et al., 96 

2015; Bauer et al., 2016), diffraction separation (Dell and Gajewski, 2011; Bakhtiari Rad et al., 97 

2018; Bakhtiari Rad et al., 2018; Schwarz, 2019), seismology in crystaline environment (Ahmed 98 

et al., 2015), near-surface processing (Bakhtiari Rad and Hickey, 2019), data interpolation 99 

(Baykulov and Gajewski, 2009) to name a few. The common-reflection-surface (CRS) method is 100 

a multi-parameter stacking technique that, in contrast to the CMP stack (Mayne, 1962), includes 101 

many neighboring CMPs. The hyperbolic 2D zero-offset CRS stack operator is parameterized in 102 

terms of the CRS parameters from Hubral (1983) in equation form by Schleicher et al. (1993) 103 

and Jӓger et al. (2001) as: 104 

 105 

 106 

Equation 1 describes the stacking traveltime tCRS in the vicinity of the CMP location x0 in the 107 

midpoint ∆xm = xm − x0 and half-offset (h) coordinates, given the zero-offset traveltime t0 and 108 

near-surface velocity v0. The three surface-related CRS parameters are the incidence/emergence 109 

angle at the coinciding central source and receiver locations (α), the radius of wavefront 110 

curvature due to a fictitious point source at the normal-incidence point (NIP) on the reflector 111 

(RNIP), and the radius of the wavefront curvature from a notional exploding reflector element 112 

surrounding the NIP on the common-reflection-surface RN as shown in Figure 1. As such, tCRS 113 

may be used to coherently stack data on the reflection surface. 114 

 115 



2.2 Partial Common-Reflection-Surface Stack 116 

The CRS method may be implemented as a partial prestack operation (Baykulov and Gajewski, 117 

2009) for prestack data enhancement, data interpolation and offset regularization. Figure 2 118 

illustrates the CRS and partial CRS surfaces. The partial CRS makes use of the same zero-offset 119 

CRS parameters to calculate the local stacking surface. To implement the partial CRS, the zero-120 

offset time t0 of every finite-offset sample is estimated as: 121 

 122 

with the finite-offset traveltime of the arbitrary sample as t(∆xm, h). The other parameters in the 123 

above equation are the same parameters as in the Equation 1. The estimated t0 can be found in a 124 

minimization procedure detailed in Baykulov and Gajewski (2009). Depending on the aperture 125 

size of the partial CRS, the number of traces used during the partial stacking may vary. 126 

Therefore, the constructive summation of coherent events leads to prestack data enhancement. 127 

Partial CRS stack has found interesting applications in seismic data interpolation and 128 

regularization (e.g., Baykulov and Gajewski, 2009; Bakhtiari Rad, 2016). 129 

 130 

2.3 3D Common-Reflection-Surface Extension 131 

As with the 2D zero-offset CRS stacking operator, the 3D version can be derived from paraxial 132 

ray theory assuming a mild lateral variation in the overburden. 3D CRS traveltime is expressed 133 

in terms of the zero-offset wavefront attributes and it is given (e.g., Bergler, 2004) by: 134 

 135 

where MNIP and MN are symmetric 2 × 2 matrices that describe the wavefront curvatures of the 136 

normal and NIP waves, respectively, p is the slowness vector in terms of incident angle α  137 

and azimuth β, the half-distance vector between shot and receiver coordinates is h, and ∆xm is the 138 

midpoint displacement vector with respect to the central ray coordinate. Accordingly, there are 139 

eight parameters for a 3D CRS stack operator: three RNIP components, three RN components and 140 

two angles α, and β. More details on the 3D extension of the CRS method are found in Bergler 141 

(2004); Bakhtiari Rad et al. (2015) and Xie and Gajewski (2016). 142 

The estimation of the 3D CRS parameters is a typical problem of global optimization (e.g., 143 

Bonomi et al., 2009). In general, for each sample in the zero-offset volume, the eight parameters 144 

of the 3D CRS must be estimated such that they provide the highest coherence for the data that is 145 

summed up along the stacking surface. However, since a global eight-parameter estimation is 146 



computationally too expensive, a pragmatic and less-expensive approach that splits the eight-147 

parameter estimation into three independent searches in the sub-volumes of the data was 148 

suggested by Müller (2003) and Bergler (2004). The pragmatic approach (PA) is composed of an 149 

initial search and a local optimization scheme. After initial search is carried out, an initial CRS 150 

stack volume is obtained. For further improvement of the stack, the initial stacking parameters 151 

can be refined using an optimization technique, e.g., simulated annealing (SA) as proposed by 152 

Müller (2003). The pragmatic approach is fast and reliable in mild areas with no sharp change in 153 

velocity. However, in geologically complex areas, the attribute-search algorithm might fail when 154 

many local extrema are present. In recent years, some global optimization algorithms have been 155 

tested to estimate the 3D CRS parameters simultaneously (e.g., Xie and Gajewski, 2016; 156 

Garabito, 2018). Despite promising results, they are still expensive and hard to implement. In the 157 

framework of this project, we used the classical pragmatic approach followed by a local 158 

optimization suggested by Müller (2003) and improved by Xie and Gajewski (2018) to partially 159 

account for conflicting dips. 160 

 161 

3 Data and method 162 

3.1 Data 163 

The seismic data used in this study are a portion of a larger multiclient 3D seismic survey MC 164 

14-Q carried out by Schlumberger-Western Geco in the Northern Gulf of Mexico between 2002 165 

and 2003. Seismic lines were acquired using a 5085 in3 dual source air gun with a source 166 

separation of 50 m and shot spacing of 37.5 m for both sources acquired in a flip-flop shooting 167 

pattern. The receivers were in eight streamers of eight km length towed at a 100 m spacing. The 168 

number of receivers was 640 per streamer with the group interval of 12.5 m. The total number of 169 

receivers per shot is 5120. The sample rate was 2 milliseconds with the Nyquist frequency of 250 170 

Hz. The record length is 12 seconds and the nominal fold was 64. According to the acquisition 171 

reports the sea surface conditions were calm throughout data acquisition. The survey vessel 172 

maintained a velocity near 5 knots (2.5 m/s) running NW-SE survey lines (i.e., inline azimuth of 173 

330°) over a gentle seafloor slope ranging from 800 to 1300 m water depth. For this study we 174 

received 50 swaths covering an area of approximately 15 km × 15 km, including Mississippi 175 

Canyon lease blocks 73, 74, 75, 117, 118, 119, 161, 162, and 163 (Figure 3).We received only 176 

the water column portion of the seismic traces, which were muted out below the mud line. 177 

 178 

3.1 Data selection and preprocessing 179 

Data preprocessing was carried out before applying both the standard CMP and CRS imaging 180 

workflows. After initial data analysis, trace editing and amplitude balancing were performed. 181 

Data showed a dominant frequency of 65 Hz. Because long offsets are not useful for imaging 182 

within the water column, traces with offsets greater than 4500 m were excluded from 183 

preprocessing. The data were muted at the seafloor reflection to achieve a relative balance of 184 

average amplitude levels of the remaining data containing the water column reflections of 185 

interest. The data preprocessing used here employed standard techniques for subsurface seismic 186 

imaging adapted to work with the water-column specific issues. In the data of interest (the data 187 

above the first arrival from the seafloor), many of the noise sources are related to the acquisition 188 

itself, such as air gun bubbles, direct arrivals from the source, ships engines, and reflection 189 



energy returns from previous shots. Other sources of noise in the environment include wind, 190 

shipping activity, and inherent ocean noise. A low-cut band pass filter with frequency of 5 Hz 191 

attenuated most of low frequency noise. Given the various noise mechanisms, we needed to 192 

carefully design a filtering strategy specifically tailored to remove or minimize as much noise as 193 

possible while preserving the weak signals. For example, removing the direct source-to-receiver 194 

wave was one of the most difficult noise sources to address in this process. The direct waves 195 

directly overlap the subtle internal reflections of the water column and complicate the imaging. 196 

The frequency-wavenumber (FK) filters were applied in different data domains (e.g., common 197 

shot gather, common offset gather) to attenuate the direct waves. Furthermore, we employed 198 

Radon-domain filtering followed by adaptive subtraction. A band pass filter of 5 to 150 Hz was 199 

repeatedly applied after each processing step to attenuate high frequency noise and spikes. The 200 

final step in preprocessing was a gain correction for spherical divergence. The preprocessed data 201 

were then prepared for velocity analysis and stacking. 202 

 203 

3.3 CMP stack and CRS stack 204 

The CMP stack was obtained after velocity analysis using semblance panels within a dense grid 205 

of 250 m spacing in the inline and 100 m in the crossline line direction. In general, the stacking 206 

velocities varied from 1410 to 1590 m/s. The normal-moveout (NMO) correction (Yilmaz, 2001) 207 

and stacking were carried out assuming the native survey bin size of 6.25 m crossline and 25 m 208 

inline with no traces interpolation. The semblance panels were picked manually since the 209 

velocity variations within the water column were small and prone failure by automatic picking. 210 

One of the complications of stack reflections within the water column is the time scale over 211 

which thermohaline variations can occur, which may be shorter than that of the data acquisition 212 

window. Klaeschen et al. (2009) demonstrated that when considering survey vessels with 213 

standard acquisition speeds of about 2 m/s, the very narrow range of sound velocity variability in 214 

the water and the very small reflections dips, water column reflectors do not move during the 215 

shot and the recording of the reflected signal and 2D seismic lines are a correct snapshot 216 

representation of water conditions. Blacic and Holbrook (2010) demonstrated that a single 217 

seismic swath in a large 3D oilfield survey is not affected by water column reflectors movement 218 

and that CMP stacking can be applied to the seismic data. Alternatively, water conditions can 219 

vary from swath to swath altering 220 

continuity of reflections and in which case the time effect must be considered when stacking the 221 

entire volume. 222 

Unlike with a standard subsurface imaging exercise, when we created our 3D CRS supergathers, 223 

we had to consider both the spatial distribution of the traces as well as the time of acquisition. 224 

Recalling that the survey spanned more than six months and considering the temporal variability 225 

of the imaging targets as detailed above, we needed to add both time and spatial selection criteria 226 

for the gather design. As such, we created supergathers spanning 1000 m in the inline direction, 227 

100 m in the crossline direction, and removed traces that were not judged to fall within a time 228 

window that we could reasonably assert represented a single snapshot of the environment. 229 



 230 

4 Imaging Results 231 

In order to test the capability of CRS workflow in enhancing seismic images of the water 232 

column, CRS results are compared with the standard CMP method at different steps in the data 233 

processing, namely CMP and CRS stack gathers, Velocity semblance panels and inlines, 234 

crosslines and time slice sections. Results are displayed synoptically in the following sections. 235 

 236 

4.1 CMP vs CRS gathers 237 

An example of a CMP gather used as input for the stacking is shown in Figure 4(a). The CMP 238 

gather exhibits lower fold and offset gaps due to operational problems during acquisition. The 239 

corresponding CRS supergather is shown in Figure 4(b). We used partial CRS to improve the 240 

quality of prestack data. The aperture size for partial stacking was determined after some trial 241 

and error and was chosen as 300 m along the offset direction and 50 m along the midpoint. This 242 

small size helps to improve the quality and infill missing offsets without stacking of traces 243 

collected at different times. The CRS supergather shows an enhanced quality. Two large gaps 244 

near the 1300 m and 2700 m offset ranges are infilled appropriately. Moreover, because of trace 245 

interpolation via partial CRS, the number of traces (fold) in the CRS supergather is almost twice 246 

the CMP gather. 247 

 248 

4.2 Velocity semblance panels 249 

Improving prestack data using partial CRS not only enhances the stacking, but also the velocity 250 

model building. The associated velocity spectrum of CMP gather that is shown in Figure 4(a) is 251 

displayed in Figure 5(a). It is observed that the semblance picks are mostly located in a narrow 252 

band between 1400 to 1500 m/s. Despite noise and missing samples, the higher semblance values 253 

are better focused from 0.3 to 0.8 s in two-way travel time (TWT). Figure 5(b) shows the 254 

comparable semblances obtained from the corresponding CRS supergather (Figure 4(b)). This 255 

velocity panel exhibits more focused picks with higher semblance values. In the CMP-derived 256 

velocity panel, the pick trend is faint and hard to pick below 0.8 s TWT, while the CRS-derived 257 

panel exhibits less noise and enhanced picks. 258 

 259 

4.3 Inline, crossline and time slice 260 

Figure 6(a) shows the CMP stack section of an arbitrary inline cutting through of the final 261 

stacked 3D volume. The section starts at 0.2 s TWT because the top part of the record is missing 262 

due to the lack of reflections in the near-offset records (the average minimum offset is 250 m). 263 

This is because the acquisition geometry is optimized for deep oil exploration targets and not for 264 

water column imaging. In addition to the low fold issue in the near offsets, this portion of the 265 

record is the most affected by the signal distortion due to the direct wave suppression. The other 266 

portion of the section between 0.4 to 1 s TWT shows clear horizontal reflections due to the ocean 267 

temperature and density stratification. For the position below 1 s to the seafloor, it is observed 268 

that the seismic data show less uniform layering of the reflections with more chaotic events 269 

possibly due to water mixing processes. Figure 6(b) displays the CRS stack of the same inline. 270 



This section exhibits more reflections, especially in the middle parts. The white arrows in Figure 271 

6(b) show some strong reflections that are better imaged using the CRS versus the CMP result in 272 

Figure 6(a). The reflected 273 

events also have more lateral continuity. This is more evident in the zoomed area in the white 274 

box. The deeper portion of the water column is the most enhanced by the CRS workflow, with 275 

many new reflectors imaged, short horizons with increased continuity and less random noise 276 

overall in the seismic image. Moreover, while with the CMP stack method the shallow signals 277 

are muted due to stretch NMO effect (Yilmaz, 2001), the CRS parameters are estimated 278 

independently and hence the NMO- stretch effect is less pronounced (note the very shallow area 279 

in both sections). The CRS stack performance is poor at the edges of the section. This is because 280 

boundary effects deteriorate the CRS parameters determination (Bakhtiari Rad et al., 2015). 281 

A 3D Kirchoff time migration with the RMS velocities estimated from user-picking of the 282 

semblances was applied. Afterwards, the data were converted to depth using the same velocities. 283 

A short migration aperture in crossline direction was considered to avoid summing up 284 

inconsistent traces from two swaths. Poststack filtering was performed to attenuate migration 285 

artifacts. A CMP-based crossline is shown in Figure 7(a) while Figure 7(b) shows the CRS 286 

results of the same crossline. Overall, water column crosslines show lower quality, acquisition 287 

footprint and swath effect produce a noise with vertical pattern and the time effect segments a 288 

large part of the reflections. However, by comparing the two results, in particular within the 289 

portion of the lines belonging to the same swath or consecutive swaths, it is possible to observe 290 

that the CRS processing improves the data and reduces the footprint gaps (note the black 291 

arrows). The temporal variability of the ocean is more significant in the shallow portion (from 292 

200 to 400 m) where water is more subject to ocean mixing and seasonal effects than the deep 293 

ocean where water masses are more stable over time. Seismic depth slices reflect this process. 294 

Figure 8(a) and Figure 8(b) show the 350 m depth slice obtained using the CMP and CRS 295 

processing, respectively. Overall, the footprint affects both images, but edges of the footprint 296 

stripes are more smoothed using the CRS-based processing (see the red arrows for comparison). 297 

Figure 8(c) and Figure 8(d) show the 650 m depth slice obtained using the CMP and CRS 298 

processing, respectively. The signal amplitude’s reduce with depth confirms a decreasing 299 

temperature gradient. Figure 8(e) and Figure 8(f) show the 850 m depth slice obtained using the 300 

CMP and CRS processing, respectively. The area in solid grey is the seafloor. In such deeper 301 

parts where water conditions are more stable, the CRS workflow delivers better results especially 302 

in terms of reflections consistency and continuity (red arrows).  This is further evidenced in 303 

Figure 9(a) and Figure 9(b) where a 7.5×6.25×0.4 km3 sub-volume display the CMP and CRS 304 

results, respectively, both in inline and crossline direction. The CRS sub-volume shows higher 305 

continuity of the reflections in the water column, in particular for the events close to the seafloor 306 

(red arrows).   307 

 308 

5 Discussion 309 

We have tried to enhance water column images of 3D seismic data acquired for deeper targets. 310 

Water column imaging needs specific processing, in particular to remove the noise affecting the 311 



signal. For 3D data collected for oil exploration purposes, orientation and timing of the survey is 312 

essentially random with respect to oceanographic processes. Because a 3D seismic data set may 313 

be acquired over several months, thermohaline interfaces can move during data collection. Our 314 

results show that, even for very large surveys, water conditions in this region of the Gulf of 315 

Mexico appear to be stable during the recording of a single seismic swath. CRS supergathers 316 

designed preferentially along the inline directions produce better inlines sections than the 317 

equivalent CMP gathers. Crosslines and horizontal slices do not show the same promising 318 

results. To address this issue, we suggest that a detailed analysis of time variability should be 319 

carried out for the entire volume. For example, the analysis of the correlation among inlines 320 

would indicate the portion of the seismic volume with similar water conditions. Using this 321 

portion, then the processing workflow could be run on appropriately segmented subsets of data. 322 

Additionally, including independent oceanographic measurements in seismic processing may 323 

improve the final image. For example, the stacking velocities can be improved using the 324 

information obtained from the Expendable Bathythermograph (XBT) or Conductivity, 325 

Temperature Depth (CTD) casts. Those casts are in-situ measurements that contain information 326 

about water temperature and salinity that can be inverted to sound speed (Nandi et al., 2004; 327 

Ruddick et al., 2009). Moreover, Fortin and Holbrook (2009) showed that including XBT casts 328 

in the velocity semblance panel could improve picking and enhance the velocity model building. 329 

In addition to inverting oceanographic casts, a velocity model can also be modeled using the 330 

wavefront tomography technique introduced by Duveneck (2004), which is an inversion scheme 331 

based on the CRS parameters. In this approach, the NIP-wave is iteratively inverted to produce a 332 

consistent velocity model. During the inversion process, a velocity model is found that 333 

minimizes the misfits between the modeled and estimated (observed) radius of curvature of NIP 334 

wavefront. Higher resolution velocity model building methods, e.g., full waveform inversion 335 

(e.g., Pratt, 1999) can also be implemented. 336 

 337 

6 Conclusions 338 

We have presented the results of improving water column seismic imaging using 3D 339 

multichannel 340 

seismic data collected in the deep-water Gulf of Mexico for oil and gas prospecting. We 341 

improved the imaging by applying the common-reflection-surface (CRS) stack technique which 342 

had not been previously used for water column imaging. We applied the CRS method in both 343 

zero-offset and finite-offset domains to enhance data quality and extract more accurate velocities 344 

from weak reflections. Particular care was taken to design appropriate CRS supergathers 345 

considering the time varying nature of water reflections. Accordingly, CRS stack parameters 346 

have been selected using both temporal and spatial constraints privileging the inline direction. In 347 

comparison to CMP stack sections, we observe the CRS technique offers improvements in both 348 

pre- and poststack domains. The CRS-processed data have improved acquisition footprint 349 

attenuation, increased reflection event continuity, and can image events previously absent in the 350 

deeper part of the seismic record. At the moment, our method offers good results for inline 351 



sections, but fails to enhance crosslines and horizontal slices which are more sensitive to both the 352 

acquisition geometry and temporal variability of ocean water masses. 353 
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Figure Captions 

 

 

Figure 1: The 2D CRS parameters: the incidence angle is denoted by α; RNIP is the radius of 

curvature of a wavefront emitted by a fictitious point source at the normal incidence point (NIP); 

RN is the radius of wavefront curvature of the fictitious so-called normal wave that would be 

generated normally to the reflector from a region surrounding the normal incidence point. This 

region represents the common-reflection-surface. 

 

Figure 2: The black curves indicate the prestack traveltimes. The 2D CRS stacking surface is 

indicated by red. The blue surface indicates the partial 2D CRS stack surface. While the result of 

CRS stacking is assigned to a zero-offset sample, e.g., the red point (x0, t0), the result of partial 

CRS can be assigned to any offset sample, e.g, the blue point. 

 

Figure 3: Location of the study area in the northern Gulf of Mexico continental shelf.  The 

zoom-in insertion highlights the 3D seismic survey carried out by Wesrne-Geco for oil and gas 

exploration. The seafloor bathymetry (curtsey from https://www.boem.gov/oil-gas-

energy/mapping-and-data/map-gallery/boem-northern-gulf-mexico-deepwater-bathymetry-grid-

3d) shows water depth and complex Gulf of Mexico seafloor topography.  

Figure 4: Example of an arbitrary CMP gather (a) and the enhanced CRS supergather (b) from 

the same location. 

 

Figure 5: (a) Original and (b) partial CRS enhanced velocity spectrum of the same CMP gather 

in the Figure 4(a). The semblance is increased and allows for more reliable picking. 

 

Figure 6: The CMP stack section of an inline extracted in the middle from the stacked volume of 

(a) and the CRS stack section of the same inline (b). Please note the same gain in both images. 

Boxes and arrows highlight areas where reflections between (a) and (b) are improved. 

 

Figure 7: Depth converted crossline obtained from CMP (a) and the CRS (b) processing. Please 

note the same gain in both images. CRS reduce the vertical noise pattern due to acquisition 

footprint effect. 

 

Figure 8: Three depth slices 350 m (a and b), 650 m (c and d) and 850 m (e and f) are presented 

to highlight CRS results (b, d and f) versus CMP (a, c, e). The same gain is used in all the 

images, the red arrows highlight the most significant differences. 



 

Figure 9: Sub portion of the 3D depth volume both for CMP (a) and CRS (b) processing. The 

size of sub volume is 7.5 × 6.25 × 0.4 km3 with the depth (vertical axis) stating at 600m. The red 

arrows highlight the differences.  






















